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Abstract. There is a need to go beyond the narrow resonance approximation for QCD sum-rule channels
which are likely to exhibit sensitivity to broad resonance structures. We discuss how the first two Laplace
sum rules are altered when one goes beyond the narrow resonance approximation to include possible
subcontinuum resonances with nonzero widths. We show that the corresponding first two finite energy
sum rules are insensitive to the widths of such resonances, provided their peaks are symmetric and entirely
below the continuum threshold. We also discuss the reduced sensitivity of the first two finite energy sum
rules to higher dimensional condensates, and show these sum rules to be insensitive to dimension > 6
condensates containing at least one q̄q pair. We extract the direct single-instanton contribution to the F1

sum rule for the longitudinal component of the axial-vector correlation function from the known single-
instanton contribution to the lowest Laplace sum rule for the pseudoscalar channel. Finally, we demonstrate
how inclusion of this instanton contribution to the finite-energy sum rule leads to both a lighter quark mass
and to more phenomenologically reasonable higher-mass-resonance contributions within the pseudoscalar
channel.

1 Introduction: Nonzero resonance widths
and QCD Laplace sum-rules

Hadron properties can be extracted by relating pheno-
menological and field-theoretical expressions for integrals
over appropriately chosen current-correlation functions,
integrals which we denote as QCD sum rules [1]. In the
narrow resonance approximation, hadronic contributions
to the imaginary part of current-current correlation func-
tions are proportional to δ-functions at the resonance
mass,

Im[Πh(s)] =
∑

r

πgrδ(s−m2
r)+Θ(s−s0)Im[Πp(s)], (1)

The summation in (1) is over all resonances r in the chan-
nel under consideration such that m2

r is less than s0. Above
this hadron-continuum threshold, the hadronic contribu-
tion Πh(s) to the correlation function is assumed to be the
same as the contribution Πp(s) from perturbative QCD,
as is evident from (1).

The hadronic sub-continuum (h) contribution to the
kth Laplace sum rule, corresponding to the transform of
the appropriate portions of (1), is defined to be

Rh
k(τ) ≡

∫ ∞

0
ds(1/π)Im[Πh(s)

−Πp(s)Θ(s − s0)]sk e−sτ (2)

In the narrow resonance approximation (Γ → 0), we see
from (1) that

lim
Γ→0

Rh
k(τ) =

∑
r

grm
2k
r exp[−m2

rτ ], (3)

an expression in which contributions from more-massive
resonances are exponentially suppressed. Note from (3)
that Rh

1 (τ) ≥ m2
`R

h
0 (τ) where m` denotes the mass of

the lowest-lying resonance in the channel. Consequently,
Rh

1 (τ)/Rh
0 (τ) is bounded from below by m2

` . Standard
QCD sum-rule methodology involves minimizing this ra-
tio [or its field-theoretical analogue] with respect to τ in
order to determine a value of m2

` [2]. The sum rule Rh
k(τ)

corresponds to the following field-theoretical contribution
from perturbative-QCD and nonperturbative (np) QCD-
vacuum effects:

RQCD
k (τ) =

∫ s0

0
ds(1/π)Im[Πp(s)]ske−sτ (4)

+(−∂/∂τ)k
{
(1/τ)L−1

τ [−dΠnp(s)/dQ2]
}

.

In (4), Q2 ≡ −s, and Πnp(s) represents all correlation-
function contributions from QCD-vacuum condensates as
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well as direct instanton contributions. The inverse Laplace
transform in (4), corresponding to the Laplace-transform
definition

LQ2 [f(τ)] ≡
∫ ∞

0
dτf(τ)e−Q2τ , (5)

is utilized to take advantage of the operator-product ex-
pansion of Πnp in inverse powers of Q2, and is easily un-
derstood via dispersion-relation methodology:

(1/τ)L−1
τ [−dΠnp(s)/dQ2] (6)

= (1/τ)L−1
τ [(1/π)

∫ ∞

0
dsIm[Πnp(s)]/(s + Q2)2]

As is evident from (5), L−1
τ [1/(s + Q2)2] = τe−sτ , which,

upon substitution into (6) and (4), leads to a result con-
sistent with duality between QCD [Πp(s) + Πnp(s)] and
phenomenological hadronic physics [Πh(s)]:

RQCD
k (τ) +

∫ ∞

s0

ds(1/π)Im[Πp(s)]ske−sτ

=
∫ ∞

0
ds(1/π)Im[Πp(s) + Πnp(s)]ske−sτ (7)

Duality between RQCD
k (τ) and Rh

k(τ) then follows via
comparison of (7) and (2). The mass of the lowest lying
resonance can be determined via the relationship

Min[RQCD
1 (τ)/RQCD

0 (τ)] ≥ m2
` (8)

over an appropriate range of τ [s1/2
0 > τ−1/2 >> ΛQCD].

There is a need to go beyond the narrow resonance ap-
proximation if QCD sum rules exhibit sensitivity to res-
onance structures with non-zero widths. Such structures
can not always be absorbed in the sum-rule continuum –
even the lowest hadronic resonances may have substantial
widths. For example, theoretical arguments exist [3,4] for
the first pion-excitation to have a mass below 1 GeV, a
floor for any reasonable estimate of the continuum thresh-
old above which perturbative and hadronic QCD should
coincide. Even if the first pion excitation state is identi-
fied with the Π(1300) resonance, whose mass pole is still
likely to be below the continuum threshold, the width of
this resonance may be as large as 600 MeV[5].

To gain qualitative insight into how nonzero resonance
widths can effect QCD sum rule calculations, we can re-
place the δ-function within resonance contributions to (1)
with a rectangular pulse of unit area centred at s = m2

with full-width ∆s = 2mΓ :

δ(s − m2) → Pm(s, Γ ) (9)
≡ [Θ(s − m2 + mΓ ) − Θ(s − m2 − mΓ )]/2mΓ.

Let us consider how such an approximation to a lowest-
lying resonance alters a QCD Laplace sum-rule determi-
nation of that resonance’s mass. We assume that all but
the lowest-lying (`) resonance is absorbed in the contin-
uum. If we replace the delta function for the lowest-lying

resonance with the pulse Pm(s, Γ ), we find from (2) that

Rh
k(τ) = g`

∫ s0

0
dsPm(s, Γ )ske−sτ

= g`m
2ke−m2τ∆k(m, Γ, τ), (10)

with the functions ∆0,1 found from explicit evaluation of
the integrals in (10)

∆0(m, Γ, τ) = sinh(mΓτ)/(mΓτ),
∆1(m, Γ, τ) = ∆0(m, Γ, τ)[1 + 1/(m2τ)]

− cosh(mΓτ)/m2τ). (11)

Note that ∆0,1(m, Γ, τ) → 1 as Γ → 0, consistent with
the δ-function limit (9). We see immediately from (10)
and (11) that

m2 =
[
Rh

1 (τ)/Rh
0 (τ)

]
[∆0(m, Γ, τ)/∆1(m, Γ, τ)]

= [m2]Γ=0 · [1 + Γ 2τ/3 + O(Γ 4)]. (12)

Since Rh
1 (τ)/Rh

0 (τ) corresponds to RQCD
1 /RQCD

0 by du-
ality, this latter ratio corresponds to m2 in the narrow
resonance approximation (Γ = 0). We see from (12) that
finite width effects will increase the masses of lowest-lying
resonances extracted via Laplace sum rules.

For Laplace sum rules, a more quantitative estimate
of resonance-width effects could be obtained by replacing
the delta-functions in (1) with Breit-Wigner peaks, and
then substituting into the Laplace sum-rule definition (2).
However, the Breit-Wigner shape has an infinite tail, and
significant portions of that tail may extend above the con-
tinuum threshold s0 or below the s = 0 boundary into
Euclidean momenta. Such contributions from the Breit-
Wigner tail, whether included or truncated away, can be
genuinely substantial for resonances with widths in excess
of 100 MeV, and can be a source of theoretical uncertainty
in Laplace sum-rule analyses of broad sub-continuum res-
onances. Such uncertainty may be understood as a limita-
tion on Laplace sum-rule methodology itself, particularly
for channels in which more than one resonance lies below
the continuum threshold. Non-lowest-lying resonances are
expected to be less stable, and consequently, to be sub-
stantially broader than lowest-lying resonances. The I =
1 pseudoscalar channel has already been mentioned as an
example of such a channel, and is discussed in the final
two sections of this paper.

2 Nonzero resonance widths
and finite-energy sum-rules

For a given current-correlation function Π(s), the finite-
energy sum-rules (FESR’s) Fk(s0) are defined here to be
the integrals [6]

Fk(s0) ≡ (1/2πi)
∫

C(s0)
ds skΠ(s)

= (1/π)
∫ s0

0
ds skIm[Π(s)], (13)
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Fig. 1. a The contour C(s0), b distortion of C(s0) to enclose
the positive real s-axis

where the contour C(s0) is an open circle of radius s0 in
the complex s-plane that does not cross the real s-axis [Fig.
1a]. The parameter s0 is understood to be the continuum
threshold discussed in the previous section. As indicated
in (13), the contour C(s0) can be distorted into a line
running below and above the physical singularities on the
positive real s-axis [Fig. 1b].

In the narrow resonance approximation (1), one finds
that

Fh
k (s0) =

∑
r

grm
2k
r ≡

∑
r

[Fh
k (s0)]r (14)

an expression that differs from (3) only in that higher-
mass sub-continuum resonances are no longer exponen-
tially suppressed. This is a positive feature of the FESR
approach, if one is seeking to use sum rules to obtain in-
formation about such resonances.

To examine finite width effects, let us first replace the
delta-functions of (1) with the finite-width rectangular
pulses (9). As long as s0 ≥ m2

r + 2mrΓr, the contribu-
tion of such a pulse to F0 is clearly the same as that of a
delta-function, since F0 is sensitive only to peak-area:

[Fh
0 (s0)]r →

∫ s0

0
ds grPmr (s, Γr) = gr. (15)

Remarkably, the F1 sum-rule is also insensitive to the
width of the rectangular pulse:

[Fh
1 (s0)]r →

∫ s0

0
ds s grPmr

(s, Γr)

= [gr/(2mrΓr)]
∫ m2

r+mrΓr

m2
r−mrΓr

ds s = grm
2
r (16)

The final result of (16) is identical to the contribution
to [Fh

1 (s0)]r obtained from the narrow resonance approx-
imation, with Pmr (s, Γr) replaced by δ(s − m2

r). The re-
sults (15) and (16) are to be contrasted with the width-
dependence exhibited in (10) and (11) for corresponding
Laplace sum rules.

Moreover, the width-independence of the first two
FESR’s obtained above is not an artifact of the rectan-
gular pulse approximation for non-zero width resonances.
Any symmetric resonance peak Rm(s) centred at m2 can
be represented as a sum over variable-width unit-area rect-
angular pulses Pm(s, Γ ′) centred at s = m2:

Rm(s) =
∫ Γmax

0
dΓ ′f(Γ ′)Pm(s, Γ ′) (17)

Assuming the peak Rm(s) has an area normalized to π,
consistent with Rm(s) → πδ(s − m2) in the narrow reso-
nance limit, one finds that

π =
∫ s0

0
dsRm(s) =

∫ Γmax

0
dΓ ′f(Γ ′) (18)

provided s0 > m2 + mΓmax. Consequently, one can use
(16) and (18) to demonstrate that replacing factors of
πδ(s − m2) in (1) with Rm(s) will not alter narrow-re-
sonance approximation predictions (14) for F0 and F1:

[Fh
0 (s0)]r →

∫ s0

0
ds(1/π)gr[Rm(s)]r = gr (19)

[Fh
1 (s0)]r →

∫ s0

0
ds(1/π)s gr[Rm(s)]r

= (1/π)
∫ Γmax

0
dΓ ′f(Γ ′) (20)

×
∫ s0

0
ds s grPmr

(s, Γ ′) = grm
2
r.

Thus we see that the first two finite-energy sum-rules F0
and F1 are impervious to resonance-width effects, pro-
vided the resonance in question is a symmetric peak that is
entirely below the continuum threshold s0. Consequently,
we observe that these sum rules are particularly well-
suited for an analysis of broad subcontinuum resonances.

3 FESR suppression of higher-dimensional
condensates with one or more q̄q-pairs

The operator-product expansion (OPE) for a dimension-
2 two-current correlation function Π(s) can be expressed
at Euclidean momenta Q2 ≡ −s > 0 in terms of QCD-
vacuum condensates as follows:

Π(−Q2)
= Cp(Q2) + Cq̄q(Q2) < mq q̄q >

+CG2(Q2) < αsG
2 > +CM (Q2) < q̄G · σq > (21)

+CG3(Q2) < αsG
3 > +C(q̄q)2(Q2) < αs(q̄q)2 > +...

To leading order in αs, the OPE coefficients Cn(Q2) of an
n-dimensional condensate < On > are of the general form

Cn(Q2) =
∑

j

[Aj + Bj ln(Q2/µ2)]mj
q/Qj+n−2 (22)

To avoid mass singularities, the index j is restricted to
zero and even positive integers if n is even, and to odd
positive integers if n is odd. To leading order in αs, con-
tributions to (21) from condensates containing at least
one fermion-antifermion pair necessarily correspond to di-
agrams with broken loops [Fig. 2], and for such diagrams
Bp = 0; logarithms arising from integrations over closed-
loop momenta do not occur. For example, to leading or-
der in αs, the < mq q̄q > contribution [Fig. 2a] to the
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Fig. 2. a Leading < q̄q > contribution to current correlation
functions, b typical leading < q̄G·σq > contribution to current
correlation functions, c typical leading < αs(q̄q)2 > contribu-
tion to current correlation functions

longitudinal component ΠL(s) of the axial-vector current
correlation function,

(gµν − pµpν/p2)ΠT (p2) + (pµpν/p2)ΠL(p2)

≡ i

∫
d4x eip·x < 0|Tjµ5(x)jν5(0)|0 >, (23)

[jµ5 ≡ ūγµγ5d] is given by [7]

CL
q̄q(Q

2) = (2/m2
q)[1 − (1 + 4m2

q/Q2)1/2]

= −4/Q2 + 4m2
q/Q4 − 8m4

q/Q6 + ... (24)

If in (22) Bj = 0 for all j, the definition (13) implies that
the FESR’s F0 and F1 are (respectively) sensitive only to
first and second order poles at Q2 = 0:

[FL
0 (s0)]q̄q = (1/2πi)

∫
C(s0)

ds CL
q̄q(−s) < mq q̄q >

= −4 < mq q̄q > (25)

[FL
1 (s0)]q̄q = (1/2πi)

∫
C(s0)

ds s CL
q̄q(−s) < mq q̄q >

= −4m2
q < mq q̄q > (26)

Thus, if Cn(Q2), the OPE coefficient of a condensate <
On >, is restricted to inverse powers of Q2, then n must
be less than or equal to 6 for that condensate to contribute
to F0 or F1. If n > 6, then n + j − 2 ≥ 6 and the leading
OPE contribution to (22) is at least a third order pole at
Q2 = 0, which cannot contribute to F0 or F1.

For the particular case of the longitudinal component
(L) of the axial-vector correlation function, which is cou-
pled to pion-resonance states, there is an additional chiral
symmetry constraint that CL

n (Q2) → 0 as mq → 0, in
which case j ≥ 1 for all coefficients of condensates that
fail to vanish in the chiral limit. As a consequence, one
can show to leading order in αs that the n = 6 conden-
sate < αs(q̄q)2 > cannot contribute to F0 or F1, as its
leading contribution is necessarily a third-order pole at
Q2 = 0 [1, 8]:

CL
(q̄q)2(Q

2) = −448πm2
qαs/27Q6 + O(m4

q/Q8). (27)

Similarly, F0 and F1 are found to be insensitive to the
(n = 5) mixed condensate < q̄G · σq >. The relevant

Fig. 3. a Leading purely-perturbative contribution to current
correlation functions, b typical leading < αsG

2 > contribu-
tion to current correlation functions, c typical leading < G3 >
contribution to current correlation functions

contribution to the longitudinal component of the axial-
vector correlator is also seen to involve only third-and-
higher order poles at Q2 = 0 [9]:

CL
M (Q2) = −(1 − v)3/2m3

qv

= 4m3
q/Q6 − 20m5

q/Q8 + ..., (28)

v ≡ (1 + 4m2
q/Q2)1/2. (29)

Thus the leading contributions to F0 and F1 sum rules in
this channel do not involve any condensates with quark-
antiquark pairs except < mq q̄q >. The F0 and F1 sum
rules in other channels can also involve the n = 5 mixed
condensate < q̄G · σq > and the n = 6 condensate <
αs(q̄q)2 > [we are assuming vacuum-saturation], but no
other condensates containing quark-antiquark pairs, as all
other such condensates are of dimension greater than 6.

4 Purely gluonic contributions to F0 and F1

4.1 Purely perturbative gluon-loop contributions

For two-current correlation functions, the suppression of
leading-order contributions from n > 6 condensates ap-
plies only to those operators whose leading contribution
in αs does not involve a closed perturbative loop. However,
all condensates involving only gluons necessarily are gen-
erated from the closed-loop vacuum polarization diagram
[Fig. 3], and such diagrams are characterized by nonzero
coefficients Bj and the OPE expansion (22). The contribu-
tion of such logarithmic terms in (22) to the FESRs F0 and
F1 can be obtained from the general relation [Q2 ≡ −s; D
is an integer]∫

C(s0)
ds ln(Q2)/(Q2)D

= −2iπ(−1)Ds1−D
0 /(1 − D); D ≥ 2. (30)

However, a more precise evaluation of the contributions of
closed-loop OPE coefficients necessarily involves the one-
loop momentum integral

X(v) ≡ (1/v2)
∫ 1

0
dx ln[1 − sx(1 − x)/m2

q − i|ε|] + 2/v2,

v ≡ (1 − 4m2
q/s)1/2. (31)

For Euclidean momenta (s < 0), X(v) is given by the real
function X(v) = (1/v)ln[(1+v)/(v−1)]. For Minkowskian
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momenta (s > 0), X(v) develops an imaginary part above
the quark-antiquark kinematic production threshold:

X(v) = (1/v) {ln[(1 + v)/(1 − v)] − iπ} , s > 4m2
q. (32)

The result (32) facilitates the sum-rule determination of
closed loop contributions to F0,1. For example, the one-
loop purely perturbative contribution [Fig. 3a] to the lon-
gitudinal component of the axial-vector current correlator
(29) is given by [9]

CL
p [v] = (−3m2

q/2π2)[v2X(v)+divergent constant]. (33)

The contribution of (33) to F0,1 is easily obtained via a
distortion of the contour C(s0) to that in Fig. 1b:

[FL
0 (s0)]p

= (1/π)
∫ s0

0
ds Im

{
CL

p [v]
}

= (3m2
q/2π2)

∫ s0

4m2
q

ds(1 − 4m2
q/s)1/2 (34)

= (3m2
q/2π2)

n
s0(1 − 4m2

q/s0)1/2 + 2m2

×ln
∣∣∣[1 − (1 − 4m2

q/s0)1/2]/[1 + (1 − 4m2
q/s0)1/2]

∣∣∣}

[FL
1 (s0)]p

= (1/π)
∫ s0

0
ds s Im

{
CL

p [v]
}

(35)

= (3m2
q/4π2)(s2

0 − 2m2
qs0)(1 − 4m2

q/s0)1/2 + (3m6
q/π2)

×ln
∣∣∣[1 − (1 − 4m2

q/s0)1/2]/[1 + (1 − 4m2
q/s0)1/2

]∣∣∣
We note that the results (34) and (35) are exact expres-
sions obtained from the one-loop expression (33), which,
to leading order in the quark mass mq, yield the following:

[FL
0 (s0)]p = (3m2

qs0/2π2) + O(m4
q),

[FL
1 (s0)]p = (3m2

qs
2
0/4π2) + O(m4

q). (36)

4.2 Two-gluon condensate contributions to F0,1

The OPE coefficient CG2(Q2) is extracted from the OPE
coefficient EG2(Q2) in the “normal-ordered basis” (i.e. the
“heavy quark” coefficients listed in Appendix B of [9]) as
follows:

CG2(Q2) = EG2(Q2) + (1/12π)Cq̄q(Q2)

−(mq/2π)ln(m2
q/µ2)CM (Q2). (37)

The linear combination (37) represents the coefficient in
the “minimally-subtracted basis”, which is chosen so as to
avoid mass-singularities [10]. For example, in the normal-
ordered basis the coefficient of < αsG

2 > for the longitu-
dinal component of the axial-vector correlator is [9]

EL
G2(Q2) = (−1/96πQ2)[16m4

q(3 + 9v2)X(v)/(v4Q4)]

+[1/(48πv4Q2)][9v4 + 4v2 + 3], (38)

which generates an expansion

EL
G2(Q2) = 1/3πQ2 − 5m2

q/6πQ4 + (m4
q/πQ6)

×[13/3 + 2ln(m2
q/Q2)] + O(m6

q/Q8). (39)

The leading term on the right hand side of (39) does
not vanish as mq → 0, despite the chiral invariance of
< αsG

2 >. Moreover, the right hand side has the quark
mass appear in the logarithm, which could (in principle)
lead to a large logarithm after subtractions. The change
of basis (37) eliminates both problems, as is evident from
direct substitution of (39), (28) and (24) into (37):

CG2(Q2) = m2
q/2πQ4 + (m4

q/πQ6)

×[11/3 − 2ln(Q2/µ2)] + O(m6
q/Q8). (40)

The result (40) is consistent with the general form
(22), although the recipe (37) requires further modifica-
tion if O[m6

qln(m2
q/Q2)/Q8] terms are to be eliminated.

It is worth noting that the change of basis (37) differs
from an operator redefinition proposed on chiral symme-
try grounds in [9] only by the presence of the final CM (Q2)
term, which has already been shown not to affect the con-
tour integrals leading to F0 and F1. In Appendix A, the
full contribution of CL

G2(Q2) to the F0,1 sum rules for the
longitudinal component of the axial-vector correlator is
determined to all orders in mq by careful consideration of
the C(s0) contour. However, contributions to F0 and F1
from the < αsG

2 > condensate can be evaluated to O(m4
q)

from application of (30) and the Cauchy residue theorem
to (40):

[FL
0 (s0)]<αsG2> = (1/2πi) < αsG

2 >

∫
C(s0)

dsCL
G2(−s)

= (m4
q/πs2

0) < αsG
2 > (41)

[FL
1 (s0)]<αsG2> = [m2

q/2π + 2m4
q/πs0] < αsG

2 > (42)

4.3 Higher-dimensional gluon condensate
contributions to F0,1

As in (37), the OPE coefficient CG3(Q2) in the minimally-
subtracted basis can be extracted from the coefficient
EG3(Q2) in the normal-ordered “heavy quark” basis [9,11]:

CG3(Q2) = EG3(Q2) + [1/(360πm2
q)]Cq̄q(Q2)

+[1/(12πmq)]CM (Q2). (43)

This change of basis once again eliminates leading-order
mass-singularities. To see this, we demonstrate application
of (43) to FESR’s by once again considering the relevant
contributions to the longitudinal component of the axial-
vector current correlation function. The OPE coefficient
EL

G3(Q2) is given by [9]

EL
G3 =

−m4
q

24πQ8v8 X(v)[7 + 23v2 + 13v4 + 5v6]
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+
1

2880πQ4v8(1 − v2)
×[105 + 65v2 − 494v4 + 266v6 + 5v8 − 75v10]

=
1

πQ2

[
1

90m2
q

− 1
90Q2 − 14m2

q

45Q4 + O(m4
q)

]
. (44)

The leading term on the last line of (44) diverges as mq →
0, an explicit mass singularity. The next-to-leading term
fails to vanish in the chiral limit. However, both of these
terms, as well as the explicit O(m2

q) term in (44) cancel in
(43) against corresponding terms from CL

q̄q (24) and CL
M

(28). Consequently, the OPE coefficient CL
G3 is explicitly

O(m4
q), and is therefore suppressed relative to CL

G2 . The
suppression of CG3 relative to CG2 in the operator prod-
uct expansion appears to be a general property [11,12].
Factors of CG3 for the scalar, vector, and axial-vector
[transverse component] current correlation functions, as
extracted via (43) from the “heavy quark” expressions in
[9], are also seen to exhibit suppression by m2

q relative to
corresponding factors of CG2 .

By contrast, the dimension-8 gluon contributions to
scalar, pseudoscalar and vector correlation functions
(which in our conventions are defined to have dimensions
of mass squared) are argued in [13] to be of the form
[A0 + B0ln(Q2/µ2)] < G4 > /Q6, where A0 and B0 are
numerical: suppression by m2

q does not seem to occur. For
the longitudinal component of the axial-vector correlator,
which picks up a factor of m2

q/Q2 relative to the pseu-
doscalar correlator, a dimension-8 contribution to FL

1 will
then be proportional [via (30)] to m2

qB0 < G4 > /s2
0.

Such a contribution will be small compared to that of
the dimension-4 condensate < G2 > [eq. (42)] provided
B0 < G4 > is small compared to < G2 > s2

0, suggesting,
in the absence of m2

q-suppression factors, that any fur-
ther suppression of 2d-dimensional gluon condensates to
FESR’s is contingent upon the ratio < G2d > /s2d

0 being
small. Such a small ratio can be anticipated via dimen-
sional and factorization arguments [e.g. < G2 > < s2

0].

5 Direct single-instanton contributions to F L
1

In the instanton liquid model, the direct single-instanton
contribution to the R0 Laplace sum rule (2) for the pseu-
doscalar (P) correlation function has been found to be [14]

RP
0 (τ) ≡ (1/π)

∫ ∞

0
Im

{
ΠP (s)]inst

}
e−sτds

=
3ρ2

8π2τ3 e−ρ2/2τ [K0(ρ2/2τ) + K1(ρ2/2τ)], (45)

where ρ [= 1/(600 MeV)] is the instanton-size parame-
ter. Since the pseuscalar correlator is related to the lon-
gitudinal component (L) of the axial-vector correlator by
ΠL(s) = 4m2

qΠ
P (s)/s, we see that the instanton contri-

bution F1 to the corresponding FESR FL
1 is 1

F1(s0) = (1/π)
∫ s0

0
Im

{
[ΠL(s)]inst

}
sds

= (4m2
q/π)

∫ s0

0
Im

{
[ΠP (s)]inst

}
ds, (46)

which is related via Laplace transformation to the function
(45) for RP

0 (s) as follows:

F ′
1(t) = (4m2

q/π)Im
{
[ΠP (t)]inst

}
, (47)

L[F ′
1(t)] ≡

∫ ∞

0
F ′

1(t)e
−stdt = 4m2

qR
P
0 (s)

= sL[F1(t)] − F1(0). (48)

We see from (46) that F1(0) = 0, and find that

F1(t) = L−1[4m2
qR

P
0 (s)/s] (49)

= L−1

[
3ρ2m2

q

2π2s4 e−ρ2/2s[K0(ρ2/2s) + K1(ρ2/2s)]

]
.

Our use of the variables s and t is to retain consistency
with standard Laplace transform conventions; the variable
t will ultimately be identified with the continuum thresh-
old s0, and the variable s corresponds to the Borel param-
eter τ in (45) [as defined in (2)]. The inverse transform of
(49) may be obtained from the asymptotic expansions of
K0 and K1 [15]:

K0(z) + K1(z)

= (π/2z)1/2e−z (50)
×[2 + 1/(4z) − 3/(64z2) + 15/(512z3)...]

F1(t) =
3m2

qρ

π3/2

[
L−1(s−7/2e−ρ2/s)

+
1

4ρ2 L−1(s−5/2e−ρ2/s)

− 3
32ρ4 L−1(s−3/2e−ρ2/s)

+
15

128ρ6 L−1(s−1/2e−ρ2/s) + ...

]
(51)

Using (51) and replacing t with s0, we find that

F1(s0) =
3m2

q

π2ρ4 G(2ρs
1/2
0 ), (52)

G(w) ≡ {
[−w2/4 + 25/32 + O(1/w2)]sin(w)

+ [−7w/8 + 15/(64w) + O(1/w3)]cos(w)
}

. (53)

1 The direct single-instanton contributions to F L
0 and F L

1 are
both O(m2

q). This implies that the instanton contribution to
F L

0 is small in comparison to that of < q̄q > (25), which is why
we focus here on F L

1
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The results (51-53) are not useful unless w → 2ρ s
1/2
0 > 1.

Since s
1/2
0 is generally expected to be at least 1 GeV, the

expansion in large w is appropriate and useful [ρ−1 ∼= 0.6
GeV]. In the large s0 limit, the leading perturbative con-
tribution to FL

1 [eq. (36)] dominates the instanton con-
tribution, which is at most linear in s0 (52-3). However,
for values of s0 near 1 GeV2, the instanton contribution is
shown in the next section to be larger than the perturba-
tive contribution, with phenomenological implications for
the light quark mass.

6 Discussion: FESR’s in the pseudoscalar
channel and the light-quark mass

An old [16] and ongoing [17] controversy in sum rule appli-
cations concerns the failure of the field-theoretical content
of the QCD sum rules to saturate the pseudoscalar chan-
nel. The essence of this problem is evident from a qual-
itative examination of the R0 and R1 Laplace sum rules
for the longitudinal component of the axial-vector current
correlation function, as defined in (2) and (4). For suitable
values of the Borel parameter τ (M ≡ τ−1/2 >> mπ), one
finds that

R0 = f2
πm2

π +
∑

M2
i
<s0

F 2
i M2

i exp(−M2
i τ)

= −4 < mq q̄q > +O(m2
q), (54)

a result consistent with the current-algebra GMOR re-
lationship f2

πm2
π = −4 < mq q̄q > [18] as long as the

subsequent subcontinuum resonances in the summation
on the hadronic side of (54) are either sufficiently heavy
(M2

i >> 1/τ >> m2
π), or their decay constants F 2

i are
sufficiently small (F 2

i << f2
πm2

π/M2
i ). The leading field-

theoretical contribution to the R1 sum rule, however, is
quadratic in the quark mass [1,8]:

R1 = f2
πm4

π +
∑

M2
i
<s0

F 2
i M4

i exp(−M2
i τ)

= m2
q[−4 < mq q̄q >

+3/(2π2τ2)+ < αsG
2 > /2π

+448πτ < αs(q̄q)2 > /27 + ...]. (55)

Naively, the field-theoretical content of (55) is of order
m2

q times the field-theoretical content of (54), whereas the
hadronic content of (55) is at least of order m2

π times
the hadronic content of (54), suggesting that mq and mπ

are comparable. A thorough treatment of QCD contri-
butions to (55) still yields substantially larger values of
the light quark mass [8,19,20] than are anticipated from
other phenomenology [5]. This mismatch in scale [i.e.,
Rh

1/Rh
0 ∼ m2

π; RQCD
1 /RQCD

0 ∼ m2
q] superficially char-

acterizes the FESR’s FL
0 and FL

1 as well. However, these
FESR’s provide a much cleaner framework for extracting
limits on mq, enabling one to avoid the large-width modi-
fications to the hadronic-resonance content of (55), as dis-
cussed in Sects. 1 and 2, as well as higher-dimensional con-
densate contributions (including that of < αs(q̄q)2 >) to

the field-theoretical content of (55), as discussed in Sects. 3
and 4.

Direct single-instanton contributions (45) to the
Laplace sum rule have been argued in a number of places
[1,14,17] to be necessary for the saturation of the pseu-
doscalar channel. If we incorporate such contributions (52,
53) into the FESR FL

1 , in conjunction with the (width-
independent) k = 1 hadronic contributions (14) as well as
the leading [O(m2

q)] field theoretical contributions (26, 36,
42), we find that

FL
1 = f2

πm4
π +

∑
M2

i
<s0

F 2
i M4

i

= m2
q[−4 < mq q̄q > + < αsG

2 > /2π + 3s2
0/4π2

+(3/π2ρ4)G(2ρs
1/2
0 ) + O(mq)]. (56)

For each subcontinuum pion-excitation state, we define
the resonance parameter ri ≡ (F 2

i M4
i ) /(f2

πm4
π). We can

then rearrange (56) to obtain the following relationship
for the light-quark mass:

m2
q =

f2
πm4

π(1 +
∑

ri)
A + [G(w) + w4/64]B

, (57)

A ≡ −4 < mq q̄q > + < αsG
2 > /2π,

B ≡ 3/(π2ρ4). (58)

In (57), the summation is understood to be over only those
resonance peaks below the continuum threshold (M2

i <
s0). The dependence on the continuum-threshold s0 enters
through the variable w = 2ρs

1/2
0 , and the function G(w)

is given by (53). Duality implies that the relationship (57)
should retain approximate validity as s0 increases to in-
clude the resonance peaks of additional pion-excitation
states. In particular, one would expect the contribution
from Π(1300), the first pion-excitation (M = 1300 ± 100
MeV, Γ = 200 - 600 MeV [5]) to be fully subcontinuum
if s0 > 4 GeV2. Possible additional contributions may
accrue in full from Π(1770) and X(1830) at even larger
values of s0.

Using standard parameter values [< mq q̄q >
= −f2

πm2
π/4, < αsG

2 > = 0.045 GeV4, ρ−1 = 600 MeV],
one can then estimate the following numerical lower bound
on the quark mass from (57):

mq = µ(w)
√

1 +
∑

ri

> µ(w)
√

1 + r1Θ(s0 − 4GeV 2), (59)

µ(w) =
2.6MeV

{0.0075 + 0.039[G(w) + w4/64]}1/2 , (60)

where r1 is the resonance parameter appropriate for the
first pion-excitation state, as defined earlier. Although chi-
ral Lagrangian arguments have been recently advanced
suggesting that r1 is substantially less than unity [4], sum-
rule estimates for r1 of order unity and larger [6] have re-
ceived further support [21] from recent Laplace sum-rule
fits.
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Table 1. Behaviour of µ(w) with increasing s0 in the presence
(Column 3) and in the absence (Column 4) of direct single
instanton contributions to the F L

1 finite energy sum rule

w s0 (GeV2) µ(w)(MeV ) µ(w) (MeV)
G(w) given by (53) G(w) = 0

3.3 0.98 5.7 9.1
3.5 1.10 5.2 8.2
3.7 1.23 4.8 7.4
3.9 1.37 4.5 6.7
4.1 1.51 4.2 6.1
4.3 1.66 4.0 5.5
4.5 1.82 3.8 5.1
4.7 1.99 3.7 4.7
4.9 2.16 3.5 4.3
5.1 2.34 3.4 4.0
5.3 2.53 3.4 3.7
5.5 2.72 3.3 3.4
5.7 2.92 3.2 3.2
5.9 3.13 3.1 3.0
6.1 3.34 3.05 2.8
6.3 3.57 3.0 2.6
6.5 3.80 2.9 2.5
6.7 4.04 2.8 2.3

We reiterate that the FESR-based inequality (59) [and
relation (57) from which it is derived] avoids any need for
a narrow-resonance approximation, which would certainly
be unphysical for dealing with broad subcontinuum pion-
resonance states. The QCD-vacuum condensates that con-
tribute are all lumped into the constant A (58); conden-
sates such as < q̄G · σq >, < αs(q̄q)2 >, and < αsG

3 >
do not generate any O(m2

q) contributions to FL
1 , as has

already been discussed in Sects. 3 and 4. Even dimension-
8 gluonic condensate contributions can be expected to be
suppressed relative to those of < αsG

2 > by the dimen-
sional arguments presented at the end of Sect. 4.

In Table 1, we tabulate µ(w) for values of s0 ranging
from 1 GeV2 to 4 GeV2. We also tabulate the same func-
tion in the absence of instanton contributions [i.e. with
G(w) = 0] in order to demonstrate the key role instantons
play in obtaining a lighter and phenomenologically con-
sistent quark mass over the entire range of s0 considered.
When the contribution of instantons is absent (Column 4
of Table 1), we find that µ(w) decreases from 9.1 MeV by
a factor of four as s0 increases from 1 GeV2 to 4 GeV2.
This behaviour, if taken seriously, would not only suggest
via (59) a rather large quark mass (∼ 9 MeV), but also a
very large aggregate contribution

∑
ri ≈ 15 from subcon-

tinuum resonance-peaks as s0 increases to 4 GeV2.
The instanton term G(w) in the denominator of (60)

greatly ameliorates these effects. When the instanton term
is included (Column 3 of Table 1), we find that µ(w) de-
creases from 5.7 MeV by only a factor of two as s0 goes
from 1 GeV2 to 4 GeV2, suggesting via (59) a lighter (∼
6 MeV) quark mass in conjunction with a phenomenolog-
ically reasonable aggregate contribution

∑
ri ≈ 3 from

subcontinuum resonance-peaks as s0 increases to 4 GeV2.
In view of the sparseness of such pion-resonance states

[which suggests replacing
∑

ri with r1], it is noteworthy
that this latter estimate is quite compatible with past [6]
and present [21] sum rule estimates for r1.

It is best to regard the results presented in this section
as essentially qualitative. We have utilized only the one-
loop-order purely-perturbative contribution to the corre-
lation function ΠL – higher-order terms can be expected
to alter the coefficient of the w4-dependence in the de-
nominator of (60). Inclusion of the renormalization group
(RG) dependence of the running quark mass also lowers
somewhat the size of the aggregate resonance contribu-
tion

∑
ri as s0 → 4 GeV2. Assuming ΛQCD = 0.2 GeV,

we find near-constancy of the RG-invariant quark mass
m̂ {mq → mq(s0) = m̂/[ln(

√
s0/ΛQCD)]4/9} over the 1

GeV2 ≤ s0 ≤ 4 GeV2 range of Table 1 provided
∑

ri → 2
if instantons are included, with

∑
ri → 10 if instantons

are not included. The key point here, however, is that the
function G(w) arising from instantons is oscillatory (53),
going from positive to negative value as s0 increases from
1 GeV2 to 4 GeV2. Moreover, G(w) is not only positive,
but is also larger over the range 1 GeV2 ≤ s0 ≤ 1.6 GeV2

than the factor w4/64 arising from perturbation theory,
thereby lowering and stabilizing the quark mass (59) in a
region for which there is at most only a partial contribu-
tion from the lowest subcontinuum resonance.
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Appendix A: Evaluation of the gluon
condensate contribution to F L

0 , F L
1

The “heavy-quark” (h.q.) gluon condensate contribution
to ΠL, as defined in (23), is obtained from Appendix B.3
of [9] as the sum of coefficients [C1G2 ]h.q. and [C2G2 ]h.q.

for the axial-vector current correlation function:[
ΠL(p2)

]
G2 = (C1G2 + C2G2)h.q. < G2 >, (A.1)

[C1G2 + C2G2 ]h.q. ≡ αEG2 = αEpole + αCxX(v), (A.2)

αEpole = − α

96π

[
18
s

+
14

s − 4m2 +
24m2

(s − 4m2)2

]
, (A.3)

αCx =
α

2π
m4

[
1

s3v4 +
3

s3v2

]
. (A.4)

We have extracted a factor of α so that EG2 as defined
in (A.2) is consistent with EG2 as defined in Sect. 3.

The gluon condensate contribution to the finite energy
sum rules

FL
0 =

1
2πi

∫
C(s0)

ΠL(s) ds,

FL
1 =

1
2πi

∫
C(s0)

ΠL(s) s ds, (A.5)
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can be obtained via (37) from direct evaluation of the
integrals

G0 ≡
∫

C(s0)
EG2 ds, G1 ≡

∫
C(s0)

EG2 s ds, (A.6)

with the contour C(s0) distorted as in Fig. 4 to encompass
any pole singularities of EG2 at s = 0 or 4m2 as well as
the branch singularity for s > 4m2. Using (32), one finds
that

G0 = −2iπ

∫ s0

4m2+ε

Cx

v
ds +

∫
C0

Epoleds

+
∫

C4m2

Epoleds +
∫

C0

CxX(v)ds

+
∫

C4m2

CxX(v)ds, (A.7)

where the contours C0 and C4m2 are clockwise circles of
radius ε about s = 0 and s = 4m2, respectively (Fig. 4).
We see from (A.3) that∫

C0

Epoleds =
3i

8
,

∫
C4m2

Epoleds =
7i

24
. (A.8)

Using the expression for Cx in (A.4), we find that

−2iπ

∫ s0

4m2+ε

Cx

v
ds = − i

8

[
− 1

3v3
0

− 2
v0

− 3v0

]

− im3

3ε3/2 − 5im

8ε1/2 + O(ε1/2) (A.9)

where v0 ≡ √
1 − 4m2/s0. The integral around the origin

is straightforward to obtain from (A.4). The integrand

CxX(v)

=
1

16π
[2 + I(s)] (A.10)

×
[ −3/2
s − 4m2 +

6m2

(s − 4m2)2
+

8m4

(s − 4m2)3
+

3
2s

]
,

I(s) =
∫ 1

0
dx ln

[
1 − sx(1 − x)/m2 − i|ε|] , (A.11)

has a simple pole at s = 0 because I(0) = 0:∫
C0

CxX(v)ds = −3i

8
. (A.12)

Note that (A.12) exactly cancels the C0 pole contribution
(A.8), indicating that the origin can be excised from the
contour of Fig. 4.

This cancellation is not peculiar to the channel we are
in. We have verified (Appendix B) that an identical can-
cellation occurs in the scalar, vector, and transverse-axial
channels between the contributions of explicit s = 0 poles
in EG2 [as in (A.8)] and the integrals of CxX(v) portions
of EG2 around C0 [as in (A.12)]. Thus the quantum-field-
theoretical singularities in G0 and G1 all occur for s ≥ 4m2

on the real s-axis for all of the above-mentioned channels.

Fig. 4. Distortion of the C(s0) contour [Fig. 1a] for < αsG
2 >

contributions to F0,1 sum rules

The divergence as ε → 0 in (A.9) is cancelled exactly
by the integration of CxX(v), as given in (A.10), over
the contour C4m2 around s = 4m2, a cancellation which
also occurs in the other three channels mentioned above.
This cancellation is most easily seen by continuing the
expression (A.11) to complex values of s in the vicinity of
s = 4m2:

I(s) + 2 = 2
[
(4m2 − s)/s

]1/2
tan−1

(
s

4m2 − s

)1/2

= π

(
4m2 − s

s

)1/2

− 2
(

4m2 − s

s

)

+
2
3

(
4m2 − s

s

)2

+ ... (A.13)

Upon substitution of (A.13) into (A.10) one finds that∫
C4m2

CxX(v)ds

= − 7i

24
+

1
16

[
3
2

∫
C4m2

s−1/2(4m2 − s)−1/2ds

+6m2
∫

C4m2

s−1/2(4m2 − s)−3/2ds

−8m4
∫

C4m2

s−1/2(4m2 − s)−5/2ds

+
3
2

∫
C4m2

s−3/2(4m2 − s)1/2ds

]
. (A.14)

The factor −7i/24 is just −2πi times the aggregate residue
at s = 4m2 obtained from multiplication of (A.13)’s inte-
ger powers of (4m2 − s) into (A.10). This pole contribu-
tion explicitly cancels the C4m2 pole contribution (A.8).
The remaining integrals in (A.14) result from multiplying
the leading π[(4m2 − s)/s]1/2 term of (A.13) into (A.10).
They are evaluated by noting that s = 4m2 + εeiθ on
the contour C4m2 , with a clockwise rotation of θ from 2π
to 0. When s > 4m2, the correct (negative) sign of the
imaginary part [2iIm{I(s)} ≡ I(s + i|δ|) − I(s − i|δ|)] is
obtained by requiring that (4m2 − s)1/2 = −iε1/2eiθ/2:∫

C4m2

(4m2 − s)−1/2s−1/2ds = O(ε1/2), (A.15)

∫
C4m2

(4m2 − s)−3/2s−1/2ds =
2i

mε1/2 + O(ε1/2), (A.16)
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∫
C4m2

(4m2 − s)−5/2s−1/2ds

= − 2i

3mε3/2 +
i

4m3ε1/2 + O(ε1/2), (A.17)

∫
C4m2

(4m2 − s)1/2s−3/2ds = O(ε3/2). (A.18)

Substituting (A.15 - A.18) into (A.14) we find that∫
C4m2

CxX(v)ds = − 7i

24
+

5im

8ε1/2 +
im3

3ε3/2 +O(ε1/2), (A.19)

explicitly cancelling the divergencies in (A.9). Since all the
s = 0 and s = 4m2 pole terms contributing to G0 have
also been shown to cancel, we find that G0 is equal to
the upper-bound contribution of the first integral on the
right-hand side of (A.7):

G0 = −2iπ

∫ s0 Cx

v
ds =

i

8

[
1

3v3
0

+
2
v0

+ 3v0

]
;

v0 ≡
√

1 − 4m2/s0. (A.20)

To obtain the full contribution of < αsG
2 > to the F0 sum

rule, we substitute (37) from the text into (41), utilizing
the results (A.6) and (A.20) in conjunction with (24) and
(28) from the text:[

FL
0 (s0)

]
<αsG2>

=< αsG
2 >

{
1

16π

[
1

3v3
0

+
2
v0

+ 3v0

]
− 1

3π

}

=< αsG
2 >

[
m4

πs2
0

+
14m6

3πs3
0

...

]
. (A.21)

To find the gluon condensate contribution to FL
1 , con-

sider first the integral G1 (A.6), which can be evaluated
via the following integrals arising from the distortion of
C(s0) indicated in Fig. 4:

G1 = −2iπ

∫ s0

4m2+ε

Cx

v
sds +

∫
C0

Epoles ds

+
∫

C4m2

Epoles ds +
∫

C0

CxX(v)s ds

+
∫

C4m2

CxX(v)s ds. (A.22)

One sees from (A.3) that∫
C0

Epoles ds = 0 ,

∫
C4m2

Epoles ds =
5im2

3
. (A.23)

Using the expression for Cx in (A.4), we find that

−2iπ

∫ s0

4m2+ε

Cx

v
sds

= im2
[

1
6v3

0
+

3
2v0

]
− 4im5

3ε3/2 − 7im3

2ε1/2 . (A.24)

Using (A.10), we find that CxX(v)s has no poles at s = 0
[note that 2+I(0) = 2], in which case

∫
C0

CxX(v)s ds = 0.
Once again, we note that the origin can be excised entirely
from the contour of Fig. 4. The divergence in (A.24) as ε →
0 is exactly cancelled by integration of CxX(v)s around
the contour C4m2 . From (A.10) we find that

CxX(v)s =
2
π

[2 + I(s)]

×
[

m4

(s − 4m2)2
+

m6

(s − 4m2)3

]
. (A.25)

If we substitute (A.13) into (A.25) and integrate around
C4m2 , we easily separate a pure-pole contribution from an
ε-dependent contribution involving half-integral powers of
(4m2 − s):∫

C4m2

CxX(v)s ds

= −5im2

3
+

7im3

2ε1/2 +
4im5

3ε3/2 + O(ε1/2). (A.26)

(A.26) is obtained through use of (A.16) and (A.17). Not
only are the ε-dependent terms in (A.24) cancelled by
(A.26), but the C4m2 pole contribution (A.23) also can-
cels against the pole term in (A.26). Thus we find that G1
is also equal to the upper-bound contribution of the first
integral on the right-hand side of (A.22):

G1 = −2iπ

∫ s0 Cxs

v
ds = im2

[
1

6v3
0

+
3

2v0

]
. (A.27)

We substitute (37) of the text into the integral in (42),
utilizing the results (A.27) in conjunction with (24) and
(28) from the text:[

FL
1 (s0)

]
<αsG2>

=
m2

2π
< αsG

2 >

{[
1

6v3
0

+
3

2v0

]
− 2

3

}
(A.28)

=
m2

2π
< αsG

2 >

{
1 +

4m2

s0
+

14m4

s2
0

+
160m6

3s3
0

...

}
.

Appendix B: Gluon condensate contributions
to F0,1 in other channels

Scalar Channel

From Appendix B.1 of [9], we have

[CG2 ]h.q. ≡ αEG2 = α (Epole + CxX(v)) , (B.1)

Epole =
(3 − v2)
16πsv2 , Cx = − (1 − v2)(3 + v2)

32πsv2 . (B.2)

We find that∫
C0

Epoleds =
i

8
,

∫
C4m2

Epoleds = −3i

8
, (B.3)
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−2iπ

∫ s0

4m2+ε

Cx

v
ds =

i

8

[
− 3

v0
+ v0 +

6m√
ε

]
, (B.4)

∫
C0

CxX(v)ds = − i

8
,

∫
C4m2

CxX(v)ds =
3i

8

(
1 − 2m√

ε

)
. (B.5)

Summing these integrals, we obtain

G0 =
∫

C(s0)
EG2ds =

i

8

[
− 3

v0
+ v0

]
. (B.6)

We also find from Appendix B.1 of [9] that∫
C(s0)

Cq̄qds = 6iπ,

∫
C(s0)

CMds = 0, (B.7)

which implies via (37) that

[F0(s0)]<αsG2> =
1

16π

[
− 3

v0
+ v0 + 4

]
< αsG

2 > .

(B.8)
Unlike the case of F0, the FESR F1 requires the use of
(37) to eliminate a logarithmic mass singularity in G1,
obtained by summing the following five integrals:∫

C0

Epoles ds = 0,

∫
C4m2

Epoles ds = −3im2

2
(B.9)

−2iπ

∫ s0

4m2+ε

Cx

v
s ds

=
im2

2

[
− 3

v0
+ 2`n(1 − v2

0) +
6m√

ε

]
, (B.10)

∫
C0

CxX(v)s ds = 0,

∫
C4m2

CxX(v)sds =
3im2

2
− 3m3

√
ε

. (B.11)

We then find that

G1 =
∫

C(s0)
EG2s ds

=
im2

2

[
− 3

v0
+ 2`n

(
4m2

s0

)]
, (B.12)

which is not analytic in m at m = 0. However the results∫
C(s0)

Cq̄qs ds = 4im2π,∫
C(s0)

CMs ds = −2imπ, (B.13)

used in conjunction with (37) in the contour integral ap-
pearing in (42) eliminates the quark-mass from the loga-
rithm:

[F1(s0)]<αsG2> (B.14)

=
m2

2π

[
− 3

2v0
+

1
3

− `n

(
s0

4µ2

)]
< αsG

2 > .

Transverse Axial Channel

From Appendix B.3 of [9], we have

[C1G2 ]h.q. ≡ αEG2 = α (Epole + CxX(v)) , (B.15)

Epole = − (1 + v2)
8πsv2 , Cx =

(1 − v2)2

16πsv2 . (B.16)

We then find that∫
C0

Epoleds =
i

4
,

∫
C4m2

Epoleds =
i

4
, (B.17)

−2iπ

∫ s0

4m2+ε

Cx

v
ds =

i

4

[
1
v0

− v0 − 2m√
ε

]
, (B.18)

∫
C0

CxX(v)ds = − i

4
,∫

C4m2

CxX(v)ds = − i

4
+

im

2
√

ε
. (B.19)

As before, pole contributions from C0 and C4m2 are can-
celled by (B.19), and the contour-radius singularity as
ε → 0 cancels between (B.18) and (B.19):

G0 =
∫

C(s0)
EG2ds =

i

4

[
1
v0

− v0

]
. (B.20)

Since in this channel, one finds that [9]∫
C(s0)

Cq̄qds = −4πi,

∫
C(s0)

CMds = 0, (B.21)

we find via (37) that

[F0(s0)]<αsG2> =
1
8π

[
1
v0

− v0 − 4
3

]
< αsG

2 > . (B.22)

Corresponding results for F1 are listed below:∫
C0

Epoles ds = 0,

∫
C4m2

Epoles ds = im2, (B.23)

−2iπ

∫ s0

4m2+ε

Cx

v
s ds = im2

(
1
v0

− 2m√
ε

)
, (B.24)

∫
C0

CxX(v)s ds = 0,

∫
C4m2

CxX(v)s ds = −im2 +
2im3
√

ε
, (B.25)

∫
C(s0)

Cq̄qs ds = −8iπm2

3
,

∫
C(s0)

CMs ds = 0, (B.26)

[F1(s0)]<αsG2> =
(

m2

2πv0
− m2

9π

)
< αsG

2 > . (B.27)
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Vector Channel

From (II.19) of [9], we find that

Epole = − (3 − 2v2 + 3v4)
48πsv4 ,

Cx =
(1 − v2)2(1 + v2)

32πsv4 . (B.28)

We then find that:∫
C0

Epoleds =
i

8
,

∫
C4m2

Epoleds =
i

24
, (B.29)

−2iπ

∫ s0

4m2+ε

Cx

v
ds

=
i

8

[
v0 +

1
3v3

0
− 8m3

3ε3/2 − m

ε1/2

]
. (B.30)

∫
C0

CxX(v)ds = − i

8
,

∫
C4m2

CxX(v)ds = − i

24
+

im3

3ε3/2 +
im

8ε1/2 , (B.31)

∫
C(s0)

Cq̄qds = −4iπ,

∫
C(s0)

CMds = 0, (B.32)

[F0(s0)]<αsG2>

=
1

16π

(
v0 +

1
3v3

0
− 8

3

)
< αsG

2 > . (B.33)

Corresponding results for F1 are listed below:∫
C0

Epoles ds = 0.

∫
C4m2

Epoles ds =
2im2

3
, (B.34)

−2iπ

∫ s0

4m2+ε

Cx

v
s ds

=
im2

2

[
1
v0

+
1

3v3
0

− 8m3

3ε3/2 − 3m

ε1/2

]
, (B.35)

∫
C0

CxX(v)s ds = 0,

∫
C4m2

CxX(v)s ds = −2im2

3
+

4im5

3ε3/2 +
3im3

2ε1/2 , (B.36)

∫
C(s0)

Cq̄qs ds = −16
3

iπm2,

∫
C(s0)

CMs ds = 0, (B.37)

[F1(s0)]<αsG2>

=
m2

4π

[
1
v0

+
1

3v3
0

− 8
9

]
< αsG

2 > . (B.38)
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